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Abstract— Environment perception and scene understanding
is an important issue for modern driver assistance systems.
However, adverse weather situations and disadvantageous illu-
mination conditions like cast shadows have a negative effect on
the proper operation of these systems.

In this paper, we propose a novel approach for cast shadow
recognition in monoscopic color images. In a first step, shadow
edge candidates are extracted evaluating binarized channels
in the color-opponent and perceptually uniform CIE L*a*b*
space. False detections are rejected in a second verification step,
using SVM classification and a combination of meaningful color
features. We introduce a non-parametric representation for
complex shadow edge geometries that enables utilizing shadow
edge information for improving downstream vision-based driver
assistance systems. A quantitative evaluation of the classification
performance as well as results on multiple real-world traffic
scenes show a reliable cast shadow recognition with only a few
false detections.

I. I NTRODUCTION

Proper and robust operation in arbitrary situations is
a security-relevant prerequisite to vision-based driver as-
sistance systems (DAS). Whereas state-of-the-art computer
vision algorithms work reliably in good weather situations,
adverse illumination conditions can cause severe problems.
In particular, cast shadows induce color and illumination
discontinuities in the image that can lead to unwanted
behavior of image segmentation, object detection as well as
correspondence search and hence have a severe influence
on DAS like collision avoidance, lane keeping or intersec-
tion assistance [1], [8], [16], [19]. The decomposition of
a single image in illumination and reflectance information
is a classic and ill-posed problem in the field of computer
vision: the number of unknowns is twice the number of
equations. In the last decades, many assumptions have been
proposed towards solving this ambiguity: Wu and Tang [20]
propose a semi-automatic, Bayesian framework that removes
shadows from single images by relying on a rough user
input. Gevers et al. [9] introduce a rule-based reflectance
classifier that distinguishes between different edge types,
like highlight edges and material edges. However, a clear
distinction between shadow edges and reflectance edges
could not be drawn. Weiss [17] separates reflectance edges
from illumination edges for a given sequence of images,
assuming a static scene (constant reflectance edges) which
is subject to illumination changes (moving shadow edges). It
follows that a temporal median, applied to all gradient maps

Fig. 1. Non-parametric cast shadow detection.The top row depicts
verified shadow edge points. A non-parametric representation in terms of a
shadow edge point density is given in the bottom row.

of the image sequence, preserves all stationary reflectance
edges but suppresses shadow edges because the illumination
direction is changing over the course of a day. This method
is well appropriate for static surveillance cameras with
temporal moving sun light, but in the field of automotive
applications the problem statement is defined vice-versa: the
illumination is assumed constant whereas the egomotion of
the vehicle leads to a change of perspective, and therefore
to a spatial shift of reflectance edges and shadow edges at
the same time. Finlayson et al. [5] detect and remove cast
shadows from monoscopic color images, using a color and
intensity invariantintrinsic image[7] and lightness recovery
techniques. Whereas the results look rather promising, their
approach demands for a precise color calibration under
different daylight conditions. Since the camera sensitivity
may change as a function of time and temperature, obtaining
such a calibration for automotive applications might be an
expensive and time-consuming challenge. In [6] they further
propose an approach for shadow removal by iteratively
minimizing the entropy in the illumination invariant image.
This allows for removing shadows in images acquired from
uncalibrated cameras, but at the expense of an increas-
ing computational time. Lalonde et al. [14] estimate the
most likely illumination direction in outdoor scenes from a
combination of weak image features. Amongst others, they
extract shadow edges by thresholding the color channels in
the CIELAB color space [15]. A large amount of missed



detections and clutter does not affect their application, since
they use the shadow edge gradients in a voting scheme, only
for estimating the predominant illumination direction.

In this paper, we present a two-stage approach for de-
tecting cast shadows in single color images. First, we find
shadow edge candidates by utilizing properties of the color
opponent CIE L*a*b* color space (Section II). In a verifi-
cation step, we propose a combination of meaningful point,
local and global features as explained in Section III and use
a machine learning technique to decide about the shadow
edge candidate (Section IV). We finally discuss a possibility
of processing shadow edge information in a non-parametric
sense (Section V), making the information available for all
downstream vision-based DAS. We conclude the paper with
a summary and give an overview of future work.

II. SHADOW EDGE CANDIDATES

As observed in [12], color opponent and perceptually
uniform spaces qualify as the most suitable representation
for the purpose of shadow edge classification in outdoor
scenes. Particular the CIE L*a*b* color space provides a
clear edge distinction: strong shadow gradients are visible in
theL

∗ channel but not in thea∗ channel, whereas reflectance
edges exhibit high gradient magnitudes in both channels (see
Fig. 2).

As depicted in Fig. 2, we convert the RGB imageI to
the CIE L*a*b* color space and compute the horizontal and
vertical image derivatives in theL∗ anda

∗ channels. Then,
we perform noise suppression on the gradient magnitudes
∇L

∗, ∇a
∗ as well as adaptive thresholding

∇L
∗σ

T = {∇L
∗ ⊗ gσ > TL}

∇a
∗σ

T
= {∇a

∗ ⊗ gσ > Ta} ,

where the Gaussian kernelgσ is of size5×5 pixels and its
standard deviation is set toσ = 1. TL andTa are multiples
of the mean values in a64 × 64 pixel neighborhood inL∗σ

and a
∗σ, respectively. A combination gives us all shadow

edge candidatess:

s = {x ∈ I : (∇L∗σ

T (x) = 1) ∩ (∇a∗σ

T = 0)} .

Note, that we need to consider high sensor noise, par-
ticularly in adverse illumination conditions and additionally
waive any color calibration for the imaging sensor. For these
reasons, the so far proposed low-level image processing
approach produces many false detections which makes a
verification step as discussed in Section IV necessary. Con-
sequently, since we do not want to loose shadow points in
the first detection step, the thresholds are set to low values
(TL = 1.2w, Ta = 1.7w wherew are the local mean values)
which results in a high recall (few false negatives) but a low
precision (many false positives).

III. F EATURE EXTRACTION

In order to decide about the shadow edge candidates and
reject as many false positives as possible, we extract a
combination of different kinds of features from the RGB,
HSV and CIE L*a*b* color space.

• Point features: Point features give information about
the candidate point directly, without considering its
neighborhood. Especially when dealing with thresholds
in the beforehand processed detection algorithm, it is
important to regard the actual pixel values for classi-
fication purposes. We consider the gradient magnitude
values∇L

∗ and∇a
∗ as well as∇H, ∇S, ∇V as the

most important point features and include them into our
descriptor vector.

• Local features: Local features add important, contex-
tual information to the "isolated" shadow edge point. In
particular, RGB color histogram features are promising,
since they are robust to small displacements of the
shadow edge and account for the typical blue tint of
shadows on the road surface. Additionally, they are
centered on the shadow edge and hence are expected to
exhibit a bi-modal shape: one cluster with high values,
representing the sunlit part of the road, and one cluster
with low values for the shadowed region. In contrast,
reflectance edges on structured scenes are expected to
have multi-model histograms. Altogether, we extract 45
features from a local9 × 9 pixel neighborhood, which
are the maximum value, mean value and standard devi-
ation of theL∗, a

∗ and each channel in the HSV color
space, respectively, as well as RGB color histograms
with 10 bins for each color channel.

• Global features:These features may account for global
illumination conditions and scene content. We extract
the global maximum and mean value of theL

∗, a
∗ and

each HSV channel, respectively.

All feature values are extracted and combined into one
extended descriptor vector, so we get the vectorv =
(v1, ..., vn) with n = 60 scalar elements describing each
shadow edge candidate.

IV. SHADOW EDGE VERIFICATION

We use the extended descriptor vectorv as described
in the last section to either verify or reject the shadow
edge candidates. In our case, the verification step can be
regarded as a binary classification problem into the classes
C = {shadow edge, reflectance edge}, i.e. the challenge is
finding some functionf that maps from descriptor spaceD
into the classesC with c = f(v), wheref : D → C.

For a descriptor space with a small number of dimensions,
such a functionf can be designed by hand, whereas for high-
dimensional descriptor spaces as discussed here (D = R

60),
this might not be possible. However, a machine learning
framework can be used to find such a function from training
examples. Numerous methods have been proposed [2], [4]
using techniques like k-Nearest-Neighbor, Decision Trees,
Neural Networks and Support Vector Machines (SVM).



Fig. 2. Shadow edge detection.The RGB input image is converted to CIE L*a*b* color space. A combination of the thresholded gradient magnitudes
gives a set of shadow edge candidates (red dots).

As SVMs are simple, fast, and powerful, we decided to
use them for classification. In principle, a linear SVM gen-
erates a hyperplane in the descriptor spaceD and classifies
descriptors by calculating on which side of the hyperplane
the descriptor vector (=point) lies. Mathematically, the hy-
perplane is represented by its normal vectorw with offset
b, then for a given descriptorv a score is calculated by
d = w

T
v − b and the final decision is obtained byd ≥ 0.

The hyperplane parametersw and b are optimized in the
learning stage to separate the two classes as far as possible.
After training, the weights vectorw can be evaluated to
get the significance of single features for the classification
outcome. Large values correspond to discriminant features,
whereas small values indicate weak features.

One of the advantages of SVMs is that kernel methods
can be incorporated. With these kernels, non-linear decision
boundaries can be found. We tested two very common
kernels, linear and RBF (Radial Basis Functions), with the
result that an RBF kernel outperforms the linear one. The
RBF parameters that separate the two classes best are found
to beC = 1 andγ = 0.1.

V. POST PROCESSING

In many indoor and outdoor applications with defined
geometries, an appropriate low-dimensional parametrization
of the detected shadow points, e.g. in terms of shadow lines
[13], is desirable. However, we observed a large variety of
different shadow shapes in common traffic scenarios which
makes the choice of a capable parametric representation chal-
lenging. For this reason, we aim to derive a non-parametric
but continuous shadow point density map.

We approximate the shadow point density on the road
plane with a Gaussian convolution kernel. As depicted in
Fig. 3(a), the actual kernel size for each image row can be
determined, assuming planarity in front of the vehicle. A
kernel size of0.3×0.3m with standard deviationσ = 0.08m
yields satisfying results (see Fig. 3(d)). In terms of com-
putational time, the most convenient choice is a uniformly
weighted box kernel as depicted in Fig. 3(c), which can

(a) (b) (c)

Fig. 3. Non-parametric representation of cast shadows.(a) illustrates
the convolution of shadow edge points with a convolution kernel of variable
size. (b) and (c) depict the shadow point density maps, achieved with a box
and a Gaussian kernel, respectively.

be implemented very efficiently, using integral images [3].
However, multiple speedup efforts exist even for Gaussian
kernels,e.g. by approximating a Gaussian kernel with the
nth repeated convolution of a box filter [10] or by a linear
combinations of weighted integral images [11], [18].

Note, that the discussed density map can directly be
used for modeling the probability of shadow edges and
hence plays a major role when propagating the acquired
information to downstream DAS.

VI. RESULTS

For all experiments, we randomly extracted images from a
large database, containing more than 27 hours of expressway
scenes, rural streets and urban environments under various
weather and illumination conditions.

A. SVM performance

The SVM classifier is tested, using a 9-fold-cross-
validation, meaning each image is tested using the training
information of the remaining 8 images. For proper classifica-
tion and in order to avoid a bias towards one class label, the
training sets has been balanced. However, the testing set will
contain more shadow edges than reflectance edges, because
they originate from the upstream shadow edge detection.

As depicted in Table I, the cumulated testing results yield
an error rate of 19.25% . Note, that these point are already



TABLE I

9-FOLD -CROSS-VALIDATION . ROWS CONTAIN THE CORRECT CLASSES,

COLUMNS THEIR CLASSIFICATION RESULTS.

reflectance edge shadow edge
reflectance edge 17093 3879

shadow edge 13700 56656
Total error rate: 19.25%

(correct: 73749, wrong: 17579)

the most ambiguous, having passed the shadow detection
from Section II. For our purposes, more important than the
overall error rate is, that the number of false positives could
be reduced from 20972 (prior classification) to 3879 (using
the proposed SVM classification). That means, 81.5% of all
false detections could be rejected in the verification step.

B. Feature Selection

In section III, we proposed an image descriptor that is
appropriate for the task of shadow edge detection. In oder
to benchmark its performance, the proposed feature set is
evaluated in regard to its significance for the classification
decision as well as its overall performance. For this purpose,
we extracted features from different color channels and
utilized multiple combinations of features in the RGB, HSV
and CIE L*a*b* color spaces and computed their receiver
operating characteristics (ROC) as depicted in Fig. 4.

Since our testing sets are not balanced, the achieved
error rates of the best classification for different feature
combinations according to Table I cannot be compared with
each other. Hence, in order to compare the overall feature
performance, we use theequal error rateand thearea under
ROCas shown in Fig. 4. Theequal error rateyields the clas-
sification error for a balanced testing set and can be achieved
as the intersection point of the ROC with a line of equal
penalization for false classifications (gray lines in Fig. 4).
The area under ROCis a popular measure to compare the
overall classification performance since it incorporates all
possible penalizations for a erroneous classification.

A feature evaluation from different color channels is
shown in Fig. 4(a). In accordance with [12], thea∗ channel
performs significantly better than theb∗ channel of the
CIE L*a*b* color space. Our results also agree with [12],
that features from color opponent perceptually uniform color
spaces like CIE L*a*b* perform better than features from
non opponent spaces like HSV. We realized an unexpected
high performance of RGB features which is due to the fact
that our application in scope are traffic scenes, where most
of the shadow points lay on the gray road surface. For this
special case, all color channels in the RGB color space
have similar values. Any shadow edge will alter the local
image statistic predominantly in the B channel. However, in
arbitrary environments, the discriminance of the B channel
is low and the CIE L*a*b* features are superior.

Fig. 4(b) shows the ROC curves and error measures
for different feature combinations in the RGB, HSV and
CIE L*a*b* color space. As mentioned before, RGB color

histograms significantly boost the feature performance for
traffic scenarios. The proposed features (La+HSV+RGB hist)
perform best in the whole ROC range and lead to a equal
error rate of 19.0% (area under ROC: 0.88).

In a third experiment, we used local, global and point
features from the CIE L*a*b* color space in combination
with RGB color histograms, but omitted some of these
feature types. As illustrated in Fig. 4c, a combination of
different feature types leads to a more accurate classification
with a decreasing equal error rate (only point features: 45%,
point+local+global+histograms: 24.1%).

C. Shadow Edge Detection

Fig. 1 and Fig. 5 show the shadow detection results for
multiple images containing challenging illumination, adverse
road surface conditions and complex shadow geometries.
The proposed approach yields a high precision with only
few false positives. In particular, important reflectance edges
like lane markings are treated correctly (e.g. Fig. 1 and
Fig. 5(a),(c),(j)). Bitumen changes (Fig. 1), rails (Fig. 5(i))
and tar seams (Fig. 5(b),(g)) do not cause false detections.
Note, that our approach only uses single color images and we
do not need any camera calibration. The advantage of a non-
parametric representation is that it can handle even complex
shadow geometries (e.g.Fig. 5(c),(j)) where low-dimensional
parametric descriptions like in [13] will fail.

However, the proposed detection algorithm still has diffi-
culties with detecting some sharp, noticeable cast shadows
(Fig. 5(i)), because the gradient magnitude response in the
a
∗ channel is too high and the shadow edge candidate is not

detected in the first stage. In addition, some wheel traces
(Fig. 5(d)) could not be rejected by the SVM classifier.
Whereas the former can be tackled with a different threshold-
ing technique in the detection step, the latter can be improved
by introducing more features in Section III.

VII. C ONCLUSION AND FUTURE WORK

We proposed a novel approach for cast shadow recognition
in single images from uncalibrated color cameras. The two-
stage algorithm consists of a low-level detection of shadow
edge candidates in the CIE L*a*b* color space, followed
by a SVM classification as a verification step. The proposed
features reduce false detections by 81.5% compared to the
initial shadow edge detection. In addition, we introduce
a non-parametric representation for complex shadow edge
geometries which allows for the consideration of arbitrary
shadow edge information in subsequent driver assistance
systems. A broad evaluation on challenging traffic scenes
yields good visual results with a high precision in detecting
arbitrarily shaped cast shadows.

Future work will include an evaluation of color features
that allow for improving the classification precision in the
presence of wheel traces and other challenging disturbances.
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Fig. 4. Feature selection.(a) depicts the performance of selected color channels and spaces. (b) shows feature combinations extracted from the RGB,
HSV and CIE L*a*b* color spaces and (c) illustrates the performance of CIE L*a*b* local, global and point features in combination with RGB color
histograms when omitting single feature types. All experiments are compared to the proposed image descriptor (point, local and global features from
L∗,a∗, H, S andV channel, as well as RGB color histograms). Note that only parts of the ROC diagrams are shown (top-left corner).
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Fig. 5. Shadow edge detection results.Input images (left), verified shadow edge points (center) and non-parametric shadow edge density maps (right).


