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Abstract— Estimating surface normals is an important task
in computer vision, e.g. in surface reconstruction, registration
and object detection. In stereo vision, the error of depth re-
construction increases quadratically with distance. This makes
estimation of surface normals an especially demanding task.
In this paper, we analyze how error propagates from noisy
disparity data to the orientation of the estimated surface
normal. Firstly, we derive a transformation for normals between
disparity space and world coordinates. Afterwards, the propa-
gation of disparity noise is analyzed by means of a Monte Carlo
method. Normal reconstruction at a pixel position requires to
consider a certain neighborhood of the pixel. The extent of
this neighborhood affects the reconstruction error. Our method
allows to determine the optimal neighborhood size required to
achieve a pre specified deviation of the angular reconstruction
error, defined by a confidence interval. We show that the
reconstruction error only depends on the distance of the surface
point to the camera, the pixel distance to the principal point
in the image plane and the angle at which the viewing ray
intersects the surface.

I. INTRODUCTION

Surface normal estimation from range images [1] is a
well known problem in surface reconstruction [2] [3] [4],
registration [5] and object detection [6]. It forms a basis for
environment perception in driver assistance systems, e.g. in
the identification of drivable space and objects. Stereo vision
offers a challenging field for normal estimation, since the
reconstruction error grows quadratically with distance.

Previous work in stereo vision includes linear error prop-
agation by means of first order Taylor expansion [7] [8].
The influence of sensor parameters on stereo quantization
errors is surveyed in [9]. An approach for recovering 3d
surface orientation and discontinuities from stereo disparity
was presented in [10]. [11] analyzed error propagation for the
estimation of line and planar surface orientations, comparing
methods based on line features and absolute correspondence
of points. To our best knowledge, there exists no work that
analyzes the effects of disparity noise on the orientation
of surface normals, so that an appropriate patch size at a
surface point can be chosen to guarantee a certain orientation
accuracy of the estimated normal.

We provide an analysis of the expected angular error
distribution by error propagation. The main contribution
of this paper is the evaluation of the expected angular
error distributions regarding the image position, the distance
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Fig. 1: Main steps of the Monte Carlo based error propaga-
tion for all analyzed surface points.

and the orientation of the normal. Moreover, we present a
transformation of normals between disparity space and world
coordinates. Regarding real world applications, we present a
method that allows to determine an optimal patch size to
estimate the surface normal for a given angular deviation,
defined by a confidence interval, at a certain distance.

This paper is structured as follows: Section II introduces a
transformation for surface normals between disparity space
and world coordinates. Section III provides details about the
selected Monte Carlo method based error propagation. Three
simulation scenarios are proposed, that are compared during
error propagation. Section IV evaluates experiments in 2d
and 3d of these scenarios and identifies parameters for the
final application. In Section V a general solution is presented
to determine an optimal patch size for a surface normal by
taking observations of the error propagation into account. We
close this paper with conclusions and an outlook.
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II. NORMAL TRANSFORMATION

Dense stereo matching for a rectified stereo camera pro-
duces a disparity image, assigning one disparity d to every
pixel position (u,v) of the (left) input image. Hence, the
surface is firstly represented as a set of samples p = (u,v,d)ᵀ

in disparity space. For each of these samples, the 3d position
x = (x,y,z)ᵀ in the camera coordinate system (world space)
can be reconstructed by the function r : R3 −→ R3,

x = r(p) =
b
d

 u− cu
v− cv

f

 , (1)

where the focal lenght f and the principal point position
(cu,cv)

ᵀ are the calibrated pinhole parameters of the identical
single cameras, while b is the baseline length of the stereo
system.

An important, well known property of r is that it is plane
preserving, i.e. the four world points r(p0), r(p1), r(p2) and
r(p3) are coplanar, if and only if p0, p1, p2 and p3 are
coplanar in disparity space [7]. Because of this property,
we can at first compute a surface normal in disparity space,
and subsequently transform it into world space. This is
beneficial for two reasons: Firstly, for normal computation,
it is necessary to establish a set of neighborhood samples
around every surface point. These samples are then used
to locally fit a plane. The normal vector of the local plane
approximates the normal vector of the surface. In disparity
space, a neighborhood can be easily chosen by picking
adjacent pixels in the disparity image. Secondly, a better
approximation of the surface normal is obtained if the
local plane fit is performed in disparity space instead of
world space. As described in [12], disparity measurements
can approximately be modeled as normally distributed. The
transformation from disparity space to world coordinates is
non-linear. That results in a distribution of the noisy points
in world space which is not Gaussian.

Let the surface point p0 = (u0,v0,d0)
ᵀ and the match-

ing normal vector ndisp = (nu,nv,nd)
ᵀ represent a plane

in disparity space. We now derive the normal vec-
tor nworld = (nx,ny,nz)

ᵀ at the reconstructed surface point
x0 = r(p0) in world space. We pick the two auxiliary points

p1 = p0 +

 −nv
nu
0

 (2)

and

p2 = p0 +

 0
nd
−nv

 . (3)

It can be easily seen that p0, p1 and p2 are within a local
plane in disparity space which interpolates p0 and has the
normal vector ndisp. We now transform p0, p1 and p2 through
r to yield the three world points

xi = r(pi), i ∈ {0,1,2}. (4)

Since r is plane preserving, x0, x1 and x2 are now on
the plane in world space that maps all points of the plane

represented in disparity space by p0 and ndisp. A normal
vector in world space can now be yielded by the cross
product

nworld = (x1−x0)× (x2−x0). (5)

For later reference, we denote the function that transforms
an arbitrary surface point p = (u,v,d)ᵀ and matching normal
vector ndisp = (nu,nv,nd)

ᵀ in disparity space into a normal
vector nworld in world space as f : R3×R3 −→R3. Inserting
(1) - (4) into (5), we yield

nworld = f (p,ndisp) =

 f nu
f nv

(cu−u)nu +(cv− v)nv−dnd

 .

(6)
Inversely, an arbitrary surface point x = (x,y,z)ᵀ and

matching normal vector nworld = (nx,ny,nz)
ᵀ in world space

can be transformed back into disparity space by the function
g,

ndisp = g(x,nworld) =

 bnx
bny

−xnx− yny− znz

 . (7)

III. ERROR PROPAGATION

We use the Monte Carlo method [13] to propagate dis-
parity noise through the normal reconstruction process. This
allows us to observe effects that cannot be detected by linear
error propagation.

We will now briefly explain how the Monte Carlo method
is used for error propagation in general. Let the random
variable X with the distribution density pX represent some
noisy observation. We are interested in the distribution that is
obtained when propagating the observation through an arbi-
trary function h, i.e. in the distribution of the random variable
Y = h(X). We draw a set of N samples SX = {x0, . . . ,xN−1}
from the distribution of X , xk ∼ pX . By propagating the sam-
ples through h, we obtain a sample set SY = {y0, . . . ,yN−1}
with yk = h(xk). The set SY approximates the distribution
of Y . Hence, statistic properties, like mean µY and standard
deviation σY , can be derived from it.

In our application, the function under consideration is the
complete normal reconstruction process. It is composed by
a stage that computes a normal vector in disparity space,
based on a given set of neighborhood pixels in the disparity
image, and the function for transforming the normal into
world space, f from equation (6).

In this paper, ground truth surface points and normals are
generated for different image positions and depths. Each
surface point is associated with a set of preset normal
directions. Every ground truth normal nworld is assigned to a
ground truth patch of points. These points are transformed to
disparity space. Disparity noise is added to all ground truth
patch points in a noise step, which we apply N times. After
each noise iteration, we estimate the surface normal n̂disp
of the noisy points, transform it to n̂world and compute the
deviation angle



Fig. 2: Selection of simulation scenarios to generate syn-
thetic ground truth surface normals nworld and corresponding
patches.

δ = arccos
nworld · n̂world

‖nworld‖‖n̂world‖
(8)

to the ground truth normal in world coordinates. Finally,
all deviation angles of one patch are represented by the
distribution density pδ , see Fig. 1.

For every surface point that is evaluated, multiple ground
truth normal vectors with different orientations are gener-
ated, which are sampled around a central normal, that is
highlighted in red in Fig. 1. In the 2d case, we will denote
the angle difference towards the central normal as θ . In 3d,
this will be complemented by a second angle, ϕ .

The noisy observations are the disparities measured at
every pixel in the image. Note that the noise in disparity
data can be assumed to be stationary over the disparity
image, and that, in particular, it does not depend on the
distance of the surface point from the camera. We assume
that disparity measurements are normally distributed with a
standard derivation of σd . Image coordinates u, v of every
pixel are not subject to any noisy measurement process, and
can be assumed to be known exactly.

The set of surface points and matching normals to be con-
sidered in the analysis are based on three different scenarios.
The scenarios are illustrated schematically in Fig. 2. The
central patches with corresponding normals are highlighted
in red, and the sampling range of the additional normal
directions is indicated in blue.

Scenario 1 (S1) compares planar patches that are located
at identical depth and which have the central normal vector
oriented along the camera z-axis.

Scenario 2 (S2) compares planar patches that are located at
identical depth with the central normal vector oriented along
the cameras viewing rays.

Scenario 3 (S3) compares planar patches that are located
at identical distance from the camera with the central normal
oriented along the cameras viewing rays.

Fig. 3: Surface patches and corresponding normals ndisp in
2d (left) and 3d (right) used in this paper.

These scenarios are designed to expose the dependency
of the angular reconstruction error on specific geometric
conditions, as will be demonstrated in the next section.

IV. PARAMETER IDENTIFICATION THROUGH
SIMULATIONS

In this section the characteristic effects during error prop-
agation are searched, to identify parameters for our goal,
the determination of an optimal (i.e. minimal) neighborhood
patch size to estimate a surface normal with a preset angular
accuracy, which is later defined by a 95% confidence interval.

We expect the following effects observing the distribution
density pδ , which we state by three hypotheses:
• H1: σδ increases with increasing depth due to depth

noise characteristics.
• H2: σδ decreases the more orthogonal a normal is w.r.t.

the camera z-axis, because the normal direction is less
influenced by the disparity noise.

• H3: σδ decreases the farther apart the points for normal
estimation are, because the noise influence diminishes.

The first parameter chosen is the distance of the sur-
face point, since the error of depth reconstruction increases
quadratically with distance and must be considered (H1). To
identify other parameters, all experiments are executed at a
constant distance of 10 meters, as defined in Sec. III for each
scenario.

In the beginning, further parameters are searched by
analyzing the distribution density pδ for different surface
points and normal directions by the mean µδ and the standard
deviation σδ . Later, the confidence interval width γδ is used
to interpret pδ . γδ represents the maximum deviation angle
of the 95% confidence interval of pδ , so that 95% of all
estimated normals n̂world have an angle deviation |δ | smaller
than γδ .

We divide our experiments in a part observing relevant
effects in 2d before showing results in 3d. Note that the angle
deviation δ is limited from −90◦ up to 90◦ in 2d, because the
sign of the deviation can be taken into account. In 3d, δ is the
dihedral angle and hence, is limited from 0◦ up to 90◦. Dense
stereo matching is lately moving towards sub pixel accurate
disparity maps [14] [15] [16]. We model uncertainties of the
disparity as a bias free normal distribution with σd = 0.1
pixels. Furthermore, realistic camera parameters are used
from the KITTI data set [17] with f ≈ 722 pixels, cu ≈ 609
pixels, cv ≈ 173 pixels and b ≈ 0.54 meters. The image
resolution considered is 1217x345 pixels.
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(a) pδ of S1 plotted for different positions
of u for θ = 0◦

(b) pδ of S1 plotted against θ at the left
image border

(c) pδ of S3 plotted against θ at the left
image border

Fig. 4: pδ plotted against u and θ

(a) µδ plotted against u for θ = 0◦ (b) µδ plotted against θ at the left image border

Fig. 5: µδ plotted against u and θ

(a) σδ plotted against u for θ = 0◦ (b) σδ plotted against θ at the left image border

Fig. 6: σδ plotted against u and θ

A. Accuracy analysis in 2d

Firstly, we observe general effects for δ by setting the
world coordinate y= 0 and observe two points on the camera
xz-plane. The normal ndisp of the two points p1 =(u1,cv,d1)

ᵀ

and p2 = (u2,cv,d2)
ᵀ can be computed directly to:

ndisp =

d1−d2
0

u2−u1

 (9)

and transformed to nworld by equation (6), considering the
mean point of p1 and p2.

The following evaluations to compare S1, S2 and S3
are executed for a constant pixel distance dpix = 15 pixels
between the observed point pair (drafted in fig. 3). We add
disparity noise N = 106 times separately on both ground truth
points in disparity space, determine n̂world after each noise
iteration and observe the distribution density pδ by varying:
• the u-coordinate of the observed surface point over the

image width from left to right border of the image and
• the direction of the surface normal by the angle θ from
−80◦ to 80◦ of every surface point.

At first, we analyze the effects on pδ that appear when
the ground truth patch is shifted from the left to the right

image border. Figure 4a shows pδ for S1 plotted for different
image coordinates u for the normal direction θ = 0◦. It can
be seen, that pδ does not match a Gaussian distribution at the
image borders. In Fig. 5a, the mean µδ of S1 is symmetric
w.r.t. the principal point and shows an approximately linear
behavior over the image width. Whereas µδ of S2 and S3 are
approximately zero over the image width. When observing
the standard deviation σδ in Fig. 6a, all scenarios are axially
symmetrical and increase with increasing pixel distance w.r.t.
the principal point.

Secondly, we evaluate pδ when varying θ (i.e. the direc-
tion) of the ground truth normal. To point out the differences
of the compared scenarios, pδ is plotted against θ at the left
image border. Fig. 4b and Fig. 4c show pδ for S1 and S3. It
is obvious that pδ of S3 is symmetric w.r.t. normal direction
θ = 0◦, while pδ of S1 is not symmetric. µδ of S2 and S3
show point symmetry w.r.t. the direction θ = 0◦ of the central
normal in contrary to S1, as can be seen in Fig. 5b. S2 and
S3 are axially symmetrical w.r.t. the direction θ = 0◦ of the
central normal in σδ and decrease the larger θ grows. No
symmetric characteristics can be found for σδ of S1 in Fig.
6b.

Furthermore we diagnose the correlation of the image
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Fig. 7: µδ plotted against u and θ

(a) S1 (b) S2 (c) S3

Fig. 8: σδ plotted against u and θ
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Fig. 9: γδ plotted against u and θ

position u and the angle θ , with regard of the distributions
of µδ and σδ . Fig. 7 and 8 show the results for all three
scenarios. While symmetry effects are not observable for S1,
we found symmetric distributions for µδ and σδ w.r.t. the
principal point for both scenarios S2 and S3. Regarding S2
and S3, a general characteristic is, that µδ and σδ increase
from the principal point to the image borders.

S2 and S3 align the central normal of the observed patch
in direction of the cameras viewing ray. That results in
symmetric distributions of µδ and σδ when observing the
presented 2d effects. We observed the discovered symmetry
effects as well, when dpix and the distance to the observed
surface point are varied. The difference between S2 and S3
is caused by the smaller influence of depth noise for S3, due
to dEuc. That results in smaller µδ and σδ compared to S2.

Since pδ is biased and not a Gaussian distribution, σδ

does not correspond to the angle deviation of the ground truth
normal. To get a characteristic value for this angle deviation,
we evaluate pδ by the angle deviation γδ , as introduced at

the beginning of this section. Fig. 9 shows the distribution of
γδ plotted against θ and the image width u. Maximum values
of γδ can be found for ground truth normals oriented along
the camera’s viewing ray (i.e. for θ = 0◦ for S2 and S3).
Further experiments have confirmed that observation. This
means that the disparity depth noise has the biggest effect
on the accuracy, if the surface patch is aligned orthogonal
to the camera’s viewing ray and not, as we expected in H2,
if the surface patch is aligned orthogonal to the camera’s
z-axis. Fig. 9b and Fig. 9c show as well, that the expected
orientation error decreases the larger |θ | is chosen.

The shown effects on the xy-plane can be transferred to the
yz-plane, since the reconstruction of u and v from disparity
space to x and y in world coordinates is identical, as can
be seen in equation (1). In the following, the symmetric
distributions of γδ in 2d w.r.t. the principal point on the image
plane and w.r.t. the normal direction θ = 0◦ are evaluated
closer in 3d, to identify dpp as another parameter.
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Fig. 10: Polar coordinate plot of the distribution of γδ for all
synthetic generated ground truth normal orientations using
S3. A 3d surface point with the distance dEuc = 10 meters at
image position pE = (732,51) pixels (see Fig. 11) is chosen.
The viewing direction is aligned with the center normal. The
black circles represent steps for θ of 10◦ from the inner circle
(θ = 10◦) to the outer circle (θ = 80◦).

B. Accuracy analysis in 3d

The accuracy analysis in 3d is observed for ground truth
patches of nine points. The patch size is defined as quadratic
on the image plane with side length dps in pixels, see Fig.
3. The simulation in 3d uses normals generated by spherical
coordinates w.r.t. central normal with steps for θ of 10◦ and
for ϕ of 15◦, as described in Sec. III. The nine points of
every patch are transformed into disparity space, noise is
added to the disparity of all points before the surface normal
is estimated in disparity space and reconstructed in world
coordinates, see Fig. 1. To analyze further symmetry effects
for γδ in 3d, all experiments are based on S3.

We use a principal components analysis (PCA) in disparity
space to determine n̂disp. The eigenvector with the smallest
eigenvalue is taken as the surface normal. The mean point
of a patch in disparity space is used additional to n̂disp to
determine n̂world as introduced in Sec. II.

The characteristics of the distribution of γδ are evaluated
for different orientations of the surface normals in 3d. Fig. 10
shows a polar coordinate plot of the distribution of γδ for all
sampled normal directions of the hemisphere referring to S3.
The plot evaluates the image position pE = (732,51) as can
be seen in Fig. 11 in a distance dEuc = 10 meters. It can be
seen that the maximum value of γδ can be found for θ = 0◦.
Moreover, we evaluated a set of image positions, which all
showed the maximum value for γδ if the normal orientation is
aligned to the camera’s viewing ray, i.e. θ = 0◦ for S3. Since
the direction of the surface normal is not known before the
estimation of n̂world, we consider the normal direction that is
least accurate in the following (i.e. θ = 0◦ for S3).

Fig. 11: γδ (θ = 0◦) of S3 plotted on the image plane with
constant Euclidian distance dEuc = 10 meters. The position
pE is evaluated in Fig. 10.

The distribution of γδ is evaluated for different image
positions (u,v), to prove the symmetric behavior of γδ w.r.t.
the distance dpp to the principal point, found during the 2d
experiments. Fig. 11 shows that the distribution of γδ in the
image plane is indeed point symmetrical to the principal
point. Therefore we chose dpp as the second parameter to
determine the optimal patch size of a surface normal.

The two parameters identified are the distance to the
surface point dEuc in meters and the distance to the principal
point dpp in pixels. In practice, these two parameters can be
determined directly by the information that is given by the
disparity map.

V. DETERMINING THE OPTIMAL PATCH SIZE

The previous section illustrated which parameters can be
used to generalize the distribution densities pδ for normals
with varying directions and surface points. In the following
we use S3 and focus on the behavior of the Euclidean
distance dEuc to the surface point in world coordinates, the
distance dpp in pixels to the principal point and the patch
size dps when choosing a constant γδ .

This interrelationship is shown for γδ = 10◦ in Fig. 12a
and 12b, when considering nine patch points to estimate
n̂world. We compare this method by considering all points
for the estimation of n̂world that lie in between the current
patch boundaries. The result is shown in Fig. 12c and 12d
for γδ = 1◦. Normals can be estimated more accurate when
considering all patch points and the larger the patch size is
chosen (as expected by H3). Note the scale of the dps axis
between Fig. 12a and Fig. 12c.

Note that Fig. 12 is generated from points that are obtained
by analyzing the distribution of γδ for θ = 0◦ (see Fig. 9c)
for different dEuc and dps. Due to interpolation effects, small
discontinuities can appear in Fig. 12.

Considering dEuc and dpp, one can determine dps to fulfill
the predefined angle deviation γδ . For a constant dpp, dps
increases with increasing distance dEuc. As already observed
in Sec. IV, dps also increases with increasing dpp at constant
distance dEuc.

VI. CONCLUSION AND OUTLOOK

In this contribution, we introduced a transformation of sur-
face normals between disparity space and world coordinates.
We presented a Monte Carlo method based error propaga-
tion for the estimation of surface normals by considering



(a) γδ = 10◦, nine patch points are considered.
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(b) γδ = 10◦, nine patch points are considered.

(c) γδ = 1◦, all patch points are used.
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(d) γδ = 1◦, all patch points are used.

Fig. 12: Relation between the distance dEuc in meters to the 3d surface point and the distance to the principal point dpp in
pixels to determine a patch size dps. (a) and (b) show the relation for γδ = 10◦ considering nine patch points to estimate
the normal n̂world. (c) and (d) show the relation for γδ = 1◦ using all patch points to estimate the normal n̂world.

disparity depth noise. A method was proposed that allows to
determine an optimal patch size for normal estimation for a
pre specified angular deviation of the angular reconstruction
error. We showed that a suitable value for the patch size can
be determined by considering only two quantities: the pixel
distance to the principal point and the Euclidean distance to
the 3d surface point.

We think that further work can extend the proposed anal-
ysis by considering noise effects for calibration parameters.
Furthermore, the comparison with other error propagation
methods can be evaluated, e.g. Taylor series and Unscented
transform. We will focus the future research on environment
perception applications, considering the knowledge of accu-
rate normal estimation we gathered in this work.

REFERENCES

[1] H. Badino, D. Huber, Y. Park, and T. Kanade, “Fast and accurate
computation of surface normals from range images,” in Robotics and
Automation (ICRA), 2011. IEEE, 2011, pp. 3084–3091.

[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3d surface construction algorithm,” in ACM Siggraph Computer
Graphics, vol. 21, no. 4. ACM, 1987, pp. 163–169.

[3] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, 2006.

[4] N. Amenta, M. Bern, and M. Kamvysselis, “A new voronoi-based
surface reconstruction algorithm,” in Proceedings of the 25th annual
conference on Computer graphics and interactive techniques. ACM,
1998, pp. 415–421.

[5] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent
range image registration methods with accuracy evaluation,” Image
and Vision Computing, vol. 25, no. 5, pp. 578–596, 2007.

[6] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 21, no. 5, pp. 433–449, 1999.

[7] O. Faugeras, Three dimensional computer vision: A geometric view-
point. the MIT Press, 1993.

[8] D. Murray and J. J. Little, “Environment modeling with stereo vision,”
in Intelligent Robots and Systems (IROS). Proceedings., vol. 3. IEEE,
2004, pp. 3116–3122.

[9] D. F. Llorca, M. A. Sotelo, I. Parra, M. Ocaña, and L. M. Bergasa,
“Error analysis in a stereo vision-based pedestrian detection sensor for
collision avoidance applications,” Sensors, vol. 10, no. 4, pp. 3741–
3758, 2010.

[10] R. P. Wildes, “Direct recovery of three-dimensional scene geometry
from binocular stereo disparity,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 13, no. 8, pp. 761–774, 1991.

[11] L. B. Wolff and T. E. Boult, “Using line correspondence stereo to
measure surface orientation.” in IJCAI, 1989, pp. 1655–1660.

[12] G. Sibley, L. Matthies, and G. Sukhatme, Bias reduction and filter
convergence for long range stereo. Springer, 2007.

[13] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” Pattern Analysis and Machine
Intelligence, no. 6, pp. 721–741, 1984.

[14] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian Conference on Computer Vision (ACCV), 2010.

[15] H. Hirschmuller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in Computer Vision and
Pattern Recognition (CVPR)., vol. 2. IEEE, 2005, pp. 807–814.

[16] K. Yamaguchi, D. McAllester, and R. Urtasun, “Robust monocular
epipolar flow estimation.”

[17] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.


	INTRODUCTION
	Normal transformation
	Error propagation
	Parameter Identification Through Simulations
	Accuracy analysis in 2d
	Accuracy analysis in 3d

	Determining the optimal patch size
	Conclusion and Outlook
	References

