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Abstract—Robotic systems that operate in environments with-
out access to global references like GNSS normally estimate
their position by odometry. The incremental nature of this
measurement is subject to drift that accumulates to large errors
in the position estimate. We minimize this drift by exploiting
scene knowledge in form of vanishing directions. These provide
a scene referenced orientation measurement which we apply in
an orientation filter to correct the estimated attitude and in
turn improve the position estimation. The experiments show that
the resulting accuracy is comparable to a referenced inertial
measurement unit and that our method can thus augment or
replace such sensors.

I. INTRODUCTION

Robotic systems navigating indoor environments are usu-
ally bound to estimate their position incrementally by in-
tegrating odometric measurements. Without global reference
this estimation is inevitable subject to drift. Only if the
infrastructure is augmented with active or passive landmarks in
known positions, an absolute position estimate up to a limited
error can be obtained by triangulation. To treat accumulating
drift, self-contained systems often combine odometry with
compass readings as heading reference and augment them with
gyroscopes to increase system dynamics and filter magnetic
field disturbances. An orientation filter is then applied to
fuse the measurements and keep track of the sensor offsets.
In return, the accuracy of the position estimation increases
strongly, since the largest part of the accumulating error can
be avoided by correcting the orientation error. In this work
we present an approach to gather such reference readings by
a vision sensor. This can be helpful as additional reference
measurement to augment the orientation filter, or avoid placing
additional expensive and sensitive inertial hardware onto vision
only platforms.

Vision only based robotic systems traditionally treat the
problem of pose estimation by simultaneously mapping the
environment in a structure from motion scheme. The mapped
environment is then used to localize the system [1], [2]. Drift is
minimized by landmark observations tracked over long periods
and can be totally corrected when loop closures happen where
the robot returns to a previously mapped part of the scene. If
the desired measurement is only the position and orientation of
the robot, this comes with the overhead of estimating, storing
and maintaining an environmental map.

The effect of measuring fixed landmarks in the environment
as orientation references can be achieved in a similar way by
measuring scene vanishing directions. Vanishing directions can

Fig. 1. Three vanishing directions typically found in indoor scenarios. A
measurement of these directions provides a scene fixed reference that we apply
to correct the drift in odometric position and orientation estimation.

be understood in the same way as compass or direction of
gravity readings, with the difference that vanishing directions
are not global references but fixed to the scene or environment.
In the scenario of indoor odometry this is no restriction since
localization relative to the building is desired, which in this
case provides the references. Such direction references have
been used to correct heading errors in navigation based on laser
scanners [3], or systems building upon cameras augmented
with inertial measurement units [4], [5], [6].

In most indoor scenarios such vanishing directions are
known upfront as orthogonal to each other. In cases were
this assumption does not apply they can be obtained with
little effort. A satellite image might be sufficient since the
inner structure with walls and floors is not needed. We apply
this kind of a-priori knowledge to robustly track all vanishing
directions in the scene. Afterwards we present a minimal
orientation filter to correct the estimated orientation from an
odometric sensor with all measured directions.

As a challenging application we use binocular visual
odometry as base to estimate the pose of a camera in all 6
degrees of freedom. The experiments in a typical building with
hallways and stairs show how this leads to an accurate, building
referenced position estimate.

II. METHODS

A. Estimation of vanishing directions

Given a camera system calibrated using a pinhole model,
lines in 3D-space are projected to lines in the image plane.
The intersection of projected parallel space lines is known as
vanishing point.
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Fig. 2. Error D between edgelet ξ and vanishing point p.

In the calibrated camera case, each vanishing point defines
a direction vector n(θ, ϕ) originating from the focal point of
the camera. We estimate this vector following the approach of
Tardif [7]. Based on a Canny edge detector, edge crossings are
suppressed and connected points extracted by flood fill region
growing. The edge hypotheses are split into straight segments.
The remaining segments longer than a minimal length (e.g.
30px) are fitted with a line model and constitute the edge list
ξ.

From ξ we seek the subset of edges ξV P , which support the
expected direction of the vertical vanishing point. To evaluate
the support of an edge ξ for a given vanishing direction nV P
we define its error as the orthogonal distance D(nV P , ξj) of
one of the line endpoints to the line connecting the vanishing
point with the edge centroid (Figure 2). All edges with D
smaller than a threshold ε are used to update the vanishing
direction by minimizing

n+
V P = min

nV P

∑
ξ∈ξVP

D(nV P , ξ) (1)

Internally, we represent the vanishing direction nV P with
spherical coordinates (θ, ϕ) and also perform minimization in
this domain.

Multiple vanishing directions Typical indoor environments
with non-curved hallways consist of three vanishing directions,
of which the forward directed is the most prominent and
depicted with its vanishing point in the visible image plane.
Besides, the vertical direction which corresponds to the vector
of gravity is depicted in many vertical edge segments and
usually always measurable (compare e.g. Figure 3(e)). The
third direction is usually orthogonal pointing sideways. The
relation between these directions is independent of the position
of the observer, hence, the angles between the directions do
not change within the building.

The estimation of multiple vanishing directions requires
a preceding classification step to assign edge observations to
vanishing directions. To this end we evaluate the distance
function D(·) for all directions and do nearest-neighbour
assignment. In our experiments this appeared to be sufficient in
comparison to more complex soft-classification schemes like
expectation maximization [8].

Instead of minimizing the cost functions (1) for each
vanishing direction V Pj with the classified support edgelets
ξV Pj and enforcing the known angles between vanishing
directions as optimization constraint, there is an alternative
and more intuitive solution. Since the spatial angles between
the vanishing directions are fixed, we do not optimize the van-
ishing directions directly, but instead seek the spatial rotation
R that needs to be applied to all vanishing directions in order
to minimize their cost functions. This is expressed as

min
θ,φ,ψ

∑
V Pj

∑
ξ∈ξV Pj

D( R(θ, φ, ψ) nV Pj
, ξ) (2)

The updated vanishing directions are then obtained from

n+
V Pj

= R(θ, φ, ψ) nV Pj (3)

This way we have to optimize 3 rotation parameters for
arbitrary many vanishing directions instead of 2 parameters for
each direction in an independent optimization. Furthermore,
we benefit from the fact that each edgelet contributes to each
direction. This leads to more observations for less parameters
and consequently to a much more robust estimation process.

B. Visual Odometry

In general, any odometric sensor with known extrinsic
calibration w.r.t. the camera can be applied to gather an incre-
mental position update. In this work we demonstrate that the
deployment of such additional sensors can be avoided in cam-
era setups and visual measurements alone suffice to estimate
the position with minor drift. An incremental motion update
solely from image data is commonly referred to as visual
odometry (VO). The general goal is to find the transformation
in all six degrees of freedom that relates the camera poses of
frame k − 1 and k. Most methods build upon salient image
feature points tracked over consecutive frames and minimize
their reprojection error. Various standalone implementations
exist, an overview can be found in [9].

In this work we employ the stereo variant of libViso2
[10]; the frame to frame transformation is provided as a
translation vector t and a 3x3 rotation matrix R which can
be written as an affine transformation T =

[
Rvo tvo
0T 1

]
. The

total transformation TG applied to the camera increments with
each frame by TG,k = TG,k−1T

−1, respectively

RG,k = RG,k−1R
T
vo (4)

tG,k = tG,k−1 + (−RG,k−1RT
votvo)

= tG,k−1 −RG,ktvo. (5)

Since this estimation is done incrementally it is inevitably
subject to drift like any other odometric estimate.

C. Information fusion

The aim of fusing visual odometry with the vanishing
directions is to include a referenced measurement of camera
attitude. The vanishing directions do not give any information
about the camera position but offer an environment referenced
attitude measurement. If two or more known vanishing direc-
tions are measured (by optimizing (2)), we can determine the
orientation that is equivalent to the incrementally accumulated
orientation RGk

but free of drift. This could directly replace
RGk

, however, in case of an erroneous measurement of the
vanishing directions the egopose estimation would be set to
an erroneous attitude. The translation component tvo would
in consequence be incremented along an incorrect direction
and lead to large errors in the position estimate. To prevent
such errors we do not discard the incremental measurement
Rvo completely but use it as a (non-referenced) attitude pre-
diction. Then, we determine the predicted vanishing directions,
compare them with the actual measurements and correct the
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Fig. 3. Example shots from the image sequence. Positions are marked in Figure 4.

attitude to minimize their differences. The corrected attitude is
afterwards basis for the translation update following (5). We
model this in an extended Kalman filter and use a quaternion
q to represent the attitude. The scene vanishing directions are
fixed as (θG, ϕG) for each direction.

Prediction We use the visual odometry transformation T
between the last frame k−1 and the current frame k to obtain
the prediction of the current camera attitude in the global
reference frame. Rvo is transformed into a rotation quaternion
qvo. Equivalent to (4) we calculate

q−k = q∗voqk−1 (6)

using the Hamilton product.

Correction The measurement prediction for each global van-
ishing direction (θG, ϕG) from current attitude q−k is found
by

h(q−k , θG, ϕG) =

[
θ
ϕ

]
= gsph

(
R(q−k )

[
sin (θG) cos (ϕG)
sin (θG) sin (ϕG)

cos (θG)

])
(7)

where R(q) is the left-handed rotation matrix equivalent
to the rotation quaternion q and[

θ
ϕ

]
= gsph(n) =

[
arccos(nz)

atan2(ny, nx)

]
(8)

the transformation between euclidean and spherical coor-
dinates.

For each vanishing direction we apply one correction step
with the local measurements (θj , ϕj) and obtain the updated
orientation estimate q+

k .

To complete the data fusion we apply the translation update
using the filtered orientation q+

k according to (5) as

tk = tk−1 + d (9)

(0,d) = qk (0,−tvo) q
∗
k (10)

III. EXPERIMENTS

Our experimental setup consists of a calibrated stereo rig
with a baseline of around 18 cm and wide-angle lenses of 3.5
mm focal length mounted on a helmet. We recorded a sequence
of 7500 images with 30fps while we were walking a 240 meter
loop through a building including two staircases connecting the
two floors as well as glass doors in the corridors that had to
be opened during the passage. Opening doors is a challenging
situation for visual odometry due to the fact that a large part
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Fig. 4. Comparison of filtered trajectory in blue and plain visual odometry
in red. The plotted coordinate system corresponds to the global vanishing
directions. A slight drift can be seen in the upper top-view, the side-view in
the bottom reveals a large drift in vertical direction.

of the observed scene is moving and violates the static scene
assumption.

To evaluate the estimation quantitatively we gathered the
ground truth attitude from an Xsens MTi-300 inertial measure-
ment unit which was calibrated externally to the cameras. The
IMU corrects drift internally using the vector of gravity and
the compass heading, as long as the unit is exposed only to
short translational accelerations as in our case, the readings
can be considered free of drift and are precise enough to be
used as basis for comparison here.

To determine the noise in the measurement of vanishing
directions we mapped the observations for all three directions
into the global IMU frame, the projections onto the unit sphere
are shown in Figure 5. The green and red horizontal vanishing
directions show a similar noise pattern, which can be explained
by the fact that the camera mainly rotates around the vertical
axis during walking. The vertical vanishing direction (blue)
varies equally around the gravity vector. We determine the
variance for the direction parameters θ and ϕ from this map-
ping and use it in the Kalman correction step as measurement
noise (σθ,ϕ = 1e−4).

The estimated path is plotted in Figure 4. The horizontal
drift of uncorrected visual odometry (red path) becomes ob-
vious on the long straight corridors (top), the vertical drift
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Fig. 5. Local vanishing direction measurements mapped into the global IMU
frame.
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Fig. 6. Distribution of attitude error in degrees without (left) and with
(right) vanishing direction reference compared to IMU ground truth. Mind
the differently scaled x-axis of the plots.

appears even stronger in this sequence (bottom). The filter
is able to correct this drift (blue path) by using the three
orthogonal vanishing directions (corresponding to the axis of
the plotted coordinate system) as environment fixed reference.
The overall position error after closing the loop decreases from
3.6% to 1.2% using the filtered estimate, but more expressive
is the estimated attitude error in the global frame. Compared to
IMU ground truth the uncorrected incremental visual odometry
deviates by up to 40◦ from the true attitude, after correction
this reduces to a mean deviation of around 1◦ (Figure 6). The
position increment benefits accordingly.

In our experimental scene the vanishing directions are
orthogonal to each other. Note that this is not a requirement
as e.g. assumed in [5] – any frame of vanishing directions
can be applied as reference. At this point we do not treat the
problem of finding these directions but assume them to be
known a priori, which is often the case in constrained indoor
navigation applications.

Compared to related approaches in [4] and [6] we ben-
efit from all vanishing directions, including those currently
not well visible. By tracking the whole frame of vanishing
directions instead of re-detecting the current frontal direction
we avoid to re-initialize the reference direction after taking a
turn. Our filtered orientation estimate stays consistent with the
global scene model also in these situations.

IV. CONCLUSION

We introduced a method to minimize the accumulating
drift in odometric position and orientation estimation using
visual scene references. We use a camera to measure the scene
vanishing directions which allows us to correct the absolute
orientation estimate of the system w.r.t. the environment.

Instead of detecting single vanishing points we proposed
to track the whole frame of vanishing directions. This exploits
knowledge about the scene already in the measurement process
and enables us to robustly track all vanishing points, including
those which are currently not visible.

An orientation filter was introduced which corrects the
estimated attitude of odometric sensor systems with these
reference measurements. This in turn greatly improves the
incrementally estimated position of the system w.r.t. the scene.
The evaluation in a typical office building shows that the
approach can handle drifting odometric data of a free moving
camera and reach an accuracy close to a referenced inertial
measurement unit. Thus, it provides an option to augment or
replace such additional reference sensors in platforms equipped
with vision sensors. The remaining small drift in the estimated
trajectory can be tied to incrementing errors in the translation
component of the odometry, which can principally not be
corrected using the vanishing directions.
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