M.Sc. Frank Bieder
- Gruppenleiter
- Tel.: +49 721 608-48423
- biederGam5∂fzi de
- www.fzi.de/team/frank-bieder/
FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10–14
76131 Karlsruhe, Germany
Forschung
Ich forsche an der Schnittstelle von Maschinellem Lernen, Robotik und Computer Vision, mit einem Fokus auf skalierbare Trainingsdatengenerierung, Cross-Sensor Domain Adaptation und End-to-End-Systeme im Realversuch. Beispiele meiner aktuellen Forschung sind:
- Learning from Maps: Skalierbare Ground-Truth-Generierung für autonomes Fahren mithilfe von HD-Karten und Mehrfachbefahrungen
- Cross-Sensor Domain Adaptation für Embodied AI Systeme
- Skalierung von End-to-End-Stacks für die Anwendung in Real-World-Szenarien
Lehre
- Dozent für Probabilistische Messtechnik und Estimation in SS23.
- Übungsleiter für Probabilistische Messtechnik und Estimation in SS20, WS20/21, SS21, WS21/22, SS22 und WS22/23.
- Aufgabensteller für Mess- und Regelungssysteme in SS19, WS19/20, SS20, SS21, WS21/22 und WS22/23.
- Übungsleiter für diverse Laborpraktika in WS19/20, WS20/21 und WS21/22.
Akademische Dienste
- Reviewer für
- CVF Winter Conference on Applications of Computer Vision (WACV)
- IEEE Intelligent Vehicles Symposium (IV)
- IEEE Intelligent Transportation Systems Magazine (ITS-M)
- IEEE International Conference on Robotics and Automation (ICRA)
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- IEEE Robotics and Automation Letters (RA-L)
- Springer International Journal of Computer Vision (IJCV)
- Chair des FMAD-Workshops Foundation Models for Autonomous Driving im Rahmen der IEEE International Conference on Intelligent Transportation Systems (ITSC) 2024 in Edmonton, Kanada, sowie 2025 an der Gold Coast, Australien
- Chair des MB2ML-Workshops Bridging the Gap between Map-Based and Map-Less Driving beim IEEE Intelligent Vehicles Symposium (IV) 2022 in Aachen, Deutschland, und 2023 in Anchorage, USA; zudem Co-Organizer der MB2ML-Workshops 2025 und 2026
- Chair einer Special Session zu Real-Time Critical Perception Tasks in the Context of Automated Driving auf der FUSION 2021 in Sun City, Südafrika, sowie der FUSION 2022 in Linköping, Schweden
Abgeschlossene Bachelor-, Diplom-, Master- und Studienarbeiten
- Online vectorized BEV perception on custom sensor setup, master thesis 2025
- Impact of localization error on online HD map construction of a custom sensor dataset, master thesis 2025
- Bird’s-eye-view perception for autonomous driving, master thesis 2024
- Imitation learning with temporal information in autonomous driving using CARLA, master thesis 2023
- Recursive fusion of sequential LiDAR measurements considering dynamic occlusions for the creation of grid maps in the context of autonomous driving, master thesis 2022
- Automated data generation with HD maps for machine learning in the context of automated driving, master thesis 2021
- Panoptic segmentation of urban scenarios, master thesis 2020
- Combining sequential LiDAR measurements for semantic segmentation of multi-layer grid maps, master thesis 2020
- A comparison of different approaches to solve the SLAM problem on a Formula Student driverless race car, master thesis 2020
- Fusion of simultaneously learned semantic information from different representations, master thesis 2020
- Occlusion handling for automatic data generation using HD maps and a highly accurate SLAM, master thesis 2020
Veröffentlichungen
-
M3TR: A Generalist Model for Real-World HD Map Completion
Immel, F.; Fehler, R.; Bieder, F.; Pauls, J.-H.; Stiller, C.
2025. IEEE Robotics and Automation Letters, 10 (12), 12541–12548. doi:10.1109/LRA.2025.3621966 -
Ein Ansatz zur automatisierten Erstellung von Trainingsdaten unter Verwendung von HD-Karten und Mehrfachbefahrungen
Bieder, F.; Hu, H.; Schantz, J.; Kirik, O.; Ries, F.; Haueis, M.; Stiller, C.
2023. Uni-DAS 15. Workshop Fahrerassistenz und automatisiertes Fahren, FAS 2023, 24. – 26.10.2023 Kloster Bonlanden, Berkheim. Hrsg.: K. Bengler, 17–26, Uni-DAS -
Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles with Adaptive Truncated Signed Distance Function
Hu, H.; Yang, H.; Wu, J.; Lei, X.; Bieder, F.; Pauls, J.-H.; Stiller, C.
2023. Proc. IEEE Intelligent Vehicles Symposium (IV). Ed.: IEEE, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV55152.2023.10186691 -
Sensor Data Fusion in Top-View Grid Maps using Evidential Reasoning with Advanced Conflict Resolution
Richter, S.; Bieder, F.; Wirges, S.; Kinzig, C.; Stiller, C.
2022. 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 04-07 July 2022, Linköping, Sweden, 04-07 July 2022, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/FUSION49751.2022.9841241 -
TEScalib: Targetless Extrinsic Self-Calibration of LiDAR and Stereo Camera for Automated Driving Vehicles with Uncertainty Analysis
Hu, H.; Han, F.; Bieder, F.; Pauls, J.-H.; Stiller, C.
2022. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6256–6263, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IROS47612.2022.9981651 -
Interaction-Aware Game-Theoretic Motion Planning for Automated Vehicles using Bi-level Optimization
Burger, C.; Fischer, J.; Bieder, F.; Tas, O. S.; Stiller, C.
2022. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 3978–3985, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ITSC55140.2022.9922600 -
MASS: Multi-Attentional Semantic Segmentation of LiDAR Data for Dense Top-View Understanding
Peng, K.; Fei, J.; Yang, K.; Roitberg, A.; Zhang, J.; Bieder, F.; Heidenreich, P.; Stiller, C.; Stiefelhagen, R.
2022. IEEE transactions on intelligent transportation systems, 23 (9), 15824–15840. doi:10.1109/TITS.2022.3145588 -
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Bieder, F.; Link, M.; Romanski, S.; Hu, H.; Stiller, C.
2021. Proceedings of 2021 24th International Conference on Information Fusion (FUSION), 64–70, Institute of Electrical and Electronics Engineers (IEEE). doi:10.23919/FUSION49465.2021.9627069 -
Fast and Robust Ground Surface Estimation from LiDAR Measurements using Uniform B-Splines
Wirges, S.; Rösch, K.; Bieder, F.; Stiller, C.
2021. 2021 IEEE 24th International Conference on Information Fusion (FUSION). Hrsg.: IEEE, Institute of Electrical and Electronics Engineers (IEEE) -
Fusion of Simultaneously Learned Features from Complementary Representations for Semantic Segmentation of Top-View Grid Maps
Bieder, F.; Link, M.; Romanski, S.; Hu, H.; Stiller, C.
2021. Proc. International Conference on Information Fusion (FUSION), IEEEXplore -
PillarSegNet: Pillar-based Semantic Grid Map Estimation using Sparse LiDAR Data
Fei, J.; Peng, K.; Heidenreich, P.; Bieder, F.; Stiller, C.
2021. IEEE Intelligent Vehicles Symposium (IV): 11-17 July 2021, online, 838–844, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV48863.2021.9575694 -
Fusion of sequential LiDAR measurements for semantic segmentation of multi-layer grid maps
Bieder, F.; Wirges, S.; Richter, S.; Stiller, C.
2021. Technisches Messen, 88 (6), 352–360. doi:10.1515/teme-2021-0026 -
Fusion of Sequential Information for Semantic Grid Map Estimation
Bieder, F.; Rehman, M. U.; Stiller, C.
2020. Forum Bildverarbeitung 2020. Ed.: T. Längle ; M. Heizmann, 79–89, KIT Scientific Publishing -
Exploiting Multi-Layer Grid Maps for Surround-View Semantic Segmentation of Sparse LiDAR Data
Bieder, F.; Wirges, S.; Janosovits, J.; Richter, S.; Wang, Z.; Stiller, C.
2020. 2020 IEEE Intelligent Vehicles Symposium (IV), 19 October - 13 November 2020, online, 1892–1898, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IV47402.2020.9304848